TPU Tutorial

캐글 링크

https://www.kaggle.com/kimbumso/getting-started-with-100-flowers-on-tpu

이탤릭 볼드 이탤릭볼드

Workflow stages

  1. Question or problem definition.
  2. Acquire training and testing data.
  3. Wrangle, prepare, cleanse the data.
  4. Analyze, identify patterns, and explore the data.
  5. Model, predict and solve the problem.
  6. Visualize, report, and present the problem solving steps and final solution.
  7. Supply or submit the results.

기본적으로 설치되어 있어야하는 패키지는 아래 코드 를 사용한다.

import math, re, os
import tensorflow as tf
import numpy as np
from matplotlib import pyplot as plt
from kaggle_datasets import KaggleDatasets
from sklearn.metrics import f1_score, precision_score, recall_score, confusion_matrix
print("Tensorflow version " + tf.__version__)
AUTO = tf.data.experimental.AUTOTUNE

TPU or GPU detection


# Detect hardware, return appropriate distribution strategy
try:
    tpu = tf.distribute.cluster_resolver.TPUClusterResolver()  # TPU detection. No parameters necessary if TPU_NAME environment variable is set. On Kaggle this is always the case.
    print('Running on TPU ', tpu.master())
except ValueError:
    tpu = None

if tpu:
    tf.config.experimental_connect_to_cluster(tpu)
    tf.tpu.experimental.initialize_tpu_system(tpu)
    strategy = tf.distribute.experimental.TPUStrategy(tpu)
else:
    strategy = tf.distribute.get_strategy() # default distribution strategy in Tensorflow. Works on CPU and single GPU.

print("REPLICAS: ", strategy.num_replicas_in_sync)

Competition data access

TPUs read data directly from Google Cloud Storage (GCS). This Kaggle utility will copy the dataset to a GCS bucket co-located with the TPU. If you have multiple datasets attached to the notebook, you can pass the name of a specific dataset to the get_gcs_path function. The name of the dataset is the name of the directory it is mounted in. Use !ls /kaggle/input/ to list attached datasets.

GCP 버킷 접근


!git clone https://github.com/GoogleCloudPlatform/gcsfuse.git

!echo "deb http://packages.cloud.google.com/apt gcsfuse-bionic main" > /etc/apt/sources.list.d/gcsfuse.list
!curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add -
!apt -qq update
!apt -qq install gcsfuse

GCP Bucket 연동


GCS_DS_PATH = KaggleDatasets().get_gcs_path() # you can list the bucket with "!gsutil ls $GCS_DS_PATH"

# Configuration


IMAGE_SIZE = [512, 512] # At this size, a GPU will run out of memory. Use the TPU.
                        # For GPU training, please select 224 x 224 px image size.
EPOCHS = 12
BATCH_SIZE = 16 * strategy.num_replicas_in_sync

GCS_PATH_SELECT = { # available image sizes
    192: GCS_DS_PATH + '/tfrecords-jpeg-192x192',
    224: GCS_DS_PATH + '/tfrecords-jpeg-224x224',
    331: GCS_DS_PATH + '/tfrecords-jpeg-331x331',
    512: GCS_DS_PATH + '/tfrecords-jpeg-512x512'
}
GCS_PATH = GCS_PATH_SELECT[IMAGE_SIZE[0]]

TRAINING_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/train/*.tfrec')
VALIDATION_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/val/*.tfrec')
TEST_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/test/*.tfrec') # predictions on this dataset should be submitted for the competition

CLASSES = ['pink primrose',    'hard-leaved pocket orchid', 'canterbury bells', 'sweet pea',     'wild geranium',     'tiger lily',           'moon orchid',              'bird of paradise', 'monkshood',        'globe thistle',         # 00 - 09
           'snapdragon',       "colt's foot",               'king protea',      'spear thistle', 'yellow iris',       'globe-flower',         'purple coneflower',        'peruvian lily',    'balloon flower',   'giant white arum lily', # 10 - 19
           'fire lily',        'pincushion flower',         'fritillary',       'red ginger',    'grape hyacinth',    'corn poppy',           'prince of wales feathers', 'stemless gentian', 'artichoke',        'sweet william',         # 20 - 29
           'carnation',        'garden phlox',              'love in the mist', 'cosmos',        'alpine sea holly',  'ruby-lipped cattleya', 'cape flower',              'great masterwort', 'siam tulip',       'lenten rose',           # 30 - 39
           'barberton daisy',  'daffodil',                  'sword lily',       'poinsettia',    'bolero deep blue',  'wallflower',           'marigold',                 'buttercup',        'daisy',            'common dandelion',      # 40 - 49
           'petunia',          'wild pansy',                'primula',          'sunflower',     'lilac hibiscus',    'bishop of llandaff',   'gaura',                    'geranium',         'orange dahlia',    'pink-yellow dahlia',    # 50 - 59
           'cautleya spicata', 'japanese anemone',          'black-eyed susan', 'silverbush',    'californian poppy', 'osteospermum',         'spring crocus',            'iris',             'windflower',       'tree poppy',            # 60 - 69
           'gazania',          'azalea',                    'water lily',       'rose',          'thorn apple',       'morning glory',        'passion flower',           'lotus',            'toad lily',        'anthurium',             # 70 - 79
           'frangipani',       'clematis',                  'hibiscus',         'columbine',     'desert-rose',       'tree mallow',          'magnolia',                 'cyclamen ',        'watercress',       'canna lily',            # 80 - 89
           'hippeastrum ',     'bee balm',                  'pink quill',       'foxglove',      'bougainvillea',     'camellia',             'mallow',                   'mexican petunia',  'bromelia',         'blanket flower',        # 90 - 99
           'trumpet creeper',  'blackberry lily',           'common tulip',     'wild rose']                                                                                                                                               # 100 - 102

Visualization utilities

data -> pixels, nothing of much interest for the machine learning practitioner in this section.


# numpy and matplotlib defaults
np.set_printoptions(threshold=15, linewidth=80)

def batch_to_numpy_images_and_labels(data):
    images, labels = data
    numpy_images = images.numpy()
    numpy_labels = labels.numpy()
    if numpy_labels.dtype == object: # binary string in this case, these are image ID strings
        numpy_labels = [None for _ in enumerate(numpy_images)]
    # If no labels, only image IDs, return None for labels (this is the case for test data)
    return numpy_images, numpy_labels

def title_from_label_and_target(label, correct_label):
    if correct_label is None:
        return CLASSES[label], True
    correct = (label == correct_label)
    return "{} [{}{}{}]".format(CLASSES[label], 'OK' if correct else 'NO', u"\u2192" if not correct else '',
                                CLASSES[correct_label] if not correct else ''), correct

def display_one_flower(image, title, subplot, red=False, titlesize=16):
    plt.subplot(*subplot)
    plt.axis('off')
    plt.imshow(image)
    if len(title) > 0:
        plt.title(title, fontsize=int(titlesize) if not red else int(titlesize/1.2), color='red' if red else 'black', fontdict={'verticalalignment':'center'}, pad=int(titlesize/1.5))
    return (subplot[0], subplot[1], subplot[2]+1)
    
def display_batch_of_images(databatch, predictions=None):
    """This will work with:
    display_batch_of_images(images)
    display_batch_of_images(images, predictions)
    display_batch_of_images((images, labels))
    display_batch_of_images((images, labels), predictions)
    """
    # data
    images, labels = batch_to_numpy_images_and_labels(databatch)
    if labels is None:
        labels = [None for _ in enumerate(images)]
        
    # auto-squaring: this will drop data that does not fit into square or square-ish rectangle
    rows = int(math.sqrt(len(images)))
    cols = len(images)//rows
        
    # size and spacing
    FIGSIZE = 13.0
    SPACING = 0.1
    subplot=(rows,cols,1)
    if rows < cols:
        plt.figure(figsize=(FIGSIZE,FIGSIZE/cols*rows))
    else:
        plt.figure(figsize=(FIGSIZE/rows*cols,FIGSIZE))
    
    # display
    for i, (image, label) in enumerate(zip(images[:rows*cols], labels[:rows*cols])):
        title = '' if label is None else CLASSES[label]
        correct = True
        if predictions is not None:
            title, correct = title_from_label_and_target(predictions[i], label)
        dynamic_titlesize = FIGSIZE*SPACING/max(rows,cols)*40+3 # magic formula tested to work from 1x1 to 10x10 images
        subplot = display_one_flower(image, title, subplot, not correct, titlesize=dynamic_titlesize)
    
    #layout
    plt.tight_layout()
    if label is None and predictions is None:
        plt.subplots_adjust(wspace=0, hspace=0)
    else:
        plt.subplots_adjust(wspace=SPACING, hspace=SPACING)
    plt.show()

def display_confusion_matrix(cmat, score, precision, recall):
    plt.figure(figsize=(15,15))
    ax = plt.gca()
    ax.matshow(cmat, cmap='Reds')
    ax.set_xticks(range(len(CLASSES)))
    ax.set_xticklabels(CLASSES, fontdict={'fontsize': 7})
    plt.setp(ax.get_xticklabels(), rotation=45, ha="left", rotation_mode="anchor")
    ax.set_yticks(range(len(CLASSES)))
    ax.set_yticklabels(CLASSES, fontdict={'fontsize': 7})
    plt.setp(ax.get_yticklabels(), rotation=45, ha="right", rotation_mode="anchor")
    titlestring = ""
    if score is not None:
        titlestring += 'f1 = {:.3f} '.format(score)
    if precision is not None:
        titlestring += '\nprecision = {:.3f} '.format(precision)
    if recall is not None:
        titlestring += '\nrecall = {:.3f} '.format(recall)
    if len(titlestring) > 0:
        ax.text(101, 1, titlestring, fontdict={'fontsize': 18, 'horizontalalignment':'right', 'verticalalignment':'top', 'color':'#804040'})
    plt.show()
    
def display_training_curves(training, validation, title, subplot):
    if subplot%10==1: # set up the subplots on the first call
        plt.subplots(figsize=(10,10), facecolor='#F0F0F0')
        plt.tight_layout()
    ax = plt.subplot(subplot)
    ax.set_facecolor('#F8F8F8')
    ax.plot(training)
    ax.plot(validation)
    ax.set_title('model '+ title)
    ax.set_ylabel(title)
    #ax.set_ylim(0.28,1.05)
    ax.set_xlabel('epoch')
    ax.legend(['train', 'valid.'])

데이터셋


def decode_image(image_data):
    image = tf.image.decode_jpeg(image_data, channels=3)
    image = tf.cast(image, tf.float32) / 255.0  # convert image to floats in [0, 1] range  정규화
    image = tf.reshape(image, [*IMAGE_SIZE, 3]) # explicit size needed for TPU
    return image

def read_labeled_tfrecord(example):
    LABELED_TFREC_FORMAT = {
        "image": tf.io.FixedLenFeature([], tf.string), # tf.string means bytestring
        "class": tf.io.FixedLenFeature([], tf.int64),  # shape [] means single element
    }
    example = tf.io.parse_single_example(example, LABELED_TFREC_FORMAT)
    image = decode_image(example['image'])
    label = tf.cast(example['class'], tf.int32)
    return image, label # returns a dataset of (image, label) pairs

def read_unlabeled_tfrecord(example):
    UNLABELED_TFREC_FORMAT = {
        "image": tf.io.FixedLenFeature([], tf.string), # tf.string means bytestring
        "id": tf.io.FixedLenFeature([], tf.string),  # shape [] means single element
        # class is missing, this competitions's challenge is to predict flower classes for the test dataset
    }
    example = tf.io.parse_single_example(example, UNLABELED_TFREC_FORMAT)
    image = decode_image(example['image'])
    idnum = example['id']
    return image, idnum # returns a dataset of image(s)

def load_dataset(filenames, labeled=True, ordered=False):
    # Read from TFRecords. For optimal performance, reading from multiple files at once and
    # disregarding data order. Order does not matter since we will be shuffling the data anyway.

    ignore_order = tf.data.Options()
    if not ordered:
        ignore_order.experimental_deterministic = False # disable order, increase speed

    dataset = tf.data.TFRecordDataset(filenames, num_parallel_reads=AUTO) # automatically interleaves reads from multiple files
    dataset = dataset.with_options(ignore_order) # uses data as soon as it streams in, rather than in its original order
    dataset = dataset.map(read_labeled_tfrecord if labeled else read_unlabeled_tfrecord, num_parallel_calls=AUTO)
    # returns a dataset of (image, label) pairs if labeled=True or (image, id) pairs if labeled=False
    return dataset

def data_augment(image, label):
    # data augmentation. Thanks to the dataset.prefetch(AUTO) statement in the next function (below),
    # this happens essentially for free on TPU. Data pipeline code is executed on the "CPU" part
    # of the TPU while the TPU itself is computing gradients.
    image = tf.image.random_flip_left_right(image)
    #image = tf.image.random_saturation(image, 0, 2)
    return image, label   

def get_training_dataset():
    dataset = load_dataset(TRAINING_FILENAMES, labeled=True)
    dataset = dataset.map(data_augment, num_parallel_calls=AUTO)
    dataset = dataset.repeat() # the training dataset must repeat for several epochs
    dataset = dataset.shuffle(2048)
    dataset = dataset.batch(BATCH_SIZE)
    dataset = dataset.prefetch(AUTO) # prefetch next batch while training (autotune prefetch buffer size)
    return dataset

def get_validation_dataset(ordered=False):
    dataset = load_dataset(VALIDATION_FILENAMES, labeled=True, ordered=ordered)
    dataset = dataset.batch(BATCH_SIZE)
    dataset = dataset.cache()
    dataset = dataset.prefetch(AUTO) # prefetch next batch while training (autotune prefetch buffer size)
    return dataset

def get_test_dataset(ordered=False):
    dataset = load_dataset(TEST_FILENAMES, labeled=False, ordered=ordered)
    dataset = dataset.batch(BATCH_SIZE)
    dataset = dataset.prefetch(AUTO) # prefetch next batch while training (autotune prefetch buffer size)
    return dataset

def count_data_items(filenames):
    # the number of data items is written in the name of the .tfrec files, i.e. flowers00-230.tfrec = 230 data items
    n = [int(re.compile(r"-([0-9]*)\.").search(filename).group(1)) for filename in filenames]
    return np.sum(n)

NUM_TRAINING_IMAGES = count_data_items(TRAINING_FILENAMES)
NUM_VALIDATION_IMAGES = count_data_items(VALIDATION_FILENAMES)
NUM_TEST_IMAGES = count_data_items(TEST_FILENAMES)
STEPS_PER_EPOCH = NUM_TRAINING_IMAGES // BATCH_SIZE
print('Dataset: {} training images, {} validation images, {} unlabeled test images'.format(NUM_TRAINING_IMAGES, NUM_VALIDATION_IMAGES, NUM_TEST_IMAGES))

데이터 시각화


# data dump
print("Training data shapes:")
for image, label in get_training_dataset().take(3):
    print(image.numpy().shape, label.numpy().shape)
print("Training data label examples:", label.numpy())
print("Validation data shapes:")
for image, label in get_validation_dataset().take(3):
    print(image.numpy().shape, label.numpy().shape)
print("Validation data label examples:", label.numpy())
print("Test data shapes:")
for image, idnum in get_test_dataset().take(3):
    print(image.numpy().shape, idnum.numpy().shape)
print("Test data IDs:", idnum.numpy().astype('U')) # U=unicode string

데이터 확인


# Peek at training data
training_dataset = get_training_dataset()
training_dataset = training_dataset.unbatch().batch(20)
train_batch = iter(training_dataset)

# run this cell again for next set of images
display_batch_of_images(next(train_batch))


# Peek at training data
training_dataset = get_training_dataset()
training_dataset = training_dataset.unbatch().batch(20)
train_batch = iter(training_dataset)

# run this cell again for next set of images
display_batch_of_images(next(train_batch))

모델 구성


with strategy.scope():
    #pretrained_model = tf.keras.applications.DenseNet201(weights='imagenet', include_top=False ,input_shape=[*IMAGE_SIZE, 3])
    #pretrained_model = tf.keras.applications.Xception(weights='imagenet', include_top=False ,input_shape=[*IMAGE_SIZE, 3])
    pretrained_model = tf.keras.applications.VGG16(weights='imagenet', include_top=False ,input_shape=[*IMAGE_SIZE, 3])
    pretrained_model.trainable = False # False = transfer learning, True = fine-tuning
    
    model = tf.keras.Sequential([
        pretrained_model,
        tf.keras.layers.GlobalAveragePooling2D(),
        tf.keras.layers.Dense(len(CLASSES), activation='softmax')
    ])
        

모델 컴파일

모델을 훈련하기 전에 필요한 몇 가지 설정이 모델 컴파일 단계에서 추가됩니다:

  • 손실 함수(Loss function)-훈련 하는 동안 모델의 오차를 측정합니다. 모델의 학습이 올바른 방향으로 향하도록 이 함수를 최소화해야 합니다.
  • 옵티마이저(Optimizer)-데이터와 손실 함수를 바탕으로 모델의 업데이트 방법을 결정합니다.
  • 지표(Metrics)-훈련 단계와 테스트 단계를 모니터링하기 위해 사용합니다. 다음 예에서는 올바르게 분류된 이미지의 비율인 정확도를 사용합니다. ~~~python

model.compile( optimizer=’adam’, loss = ‘sparse_categorical_crossentropy’, metrics=[‘sparse_categorical_accuracy’] )

model.summary()


### 모델 훈련
신경망 모델을 훈련하는 단계는 다음과 같습니다:

- 훈련 데이터를 모델에 주입합니다
- 모델이 이미지와 레이블을 매핑하는 방법을 배웁니다.
- 테스트 세트에 대한 모델의 예측을 만듭니다-이 예에서는 test_images 배열입니다. 이 예측이 test_labels 배열의 레이블과 맞는지 확인합니다.
- 훈련을 시작하기 위해 model.fit 메서드를 호출하면 모델이 훈련 데이터를 학습
- TPU에 맞춰서 Batch단위로 수행
~~~python

history = model.fit(get_training_dataset(), steps_per_epoch=STEPS_PER_EPOCH, epochs=EPOCHS, validation_data=get_validation_dataset())

Loss, accuracy 확인


display_training_curves(history.history['loss'], history.history['val_loss'], 'loss', 211)
display_training_curves(history.history['sparse_categorical_accuracy'], history.history['val_sparse_categorical_accuracy'], 'accuracy', 212)

오차 행렬

  • 실데이터와 예측 라벨을 비교하여 출력 ~~~python

cmdataset = get_validation_dataset(ordered=True) # since we are splitting the dataset and iterating separately on images and labels, order matters. images_ds = cmdataset.map(lambda image, label: image) labels_ds = cmdataset.map(lambda image, label: label).unbatch() cm_correct_labels = next(iter(labels_ds.batch(NUM_VALIDATION_IMAGES))).numpy() # get everything as one batch cm_probabilities = model.predict(images_ds) cm_predictions = np.argmax(cm_probabilities, axis=-1) print(“Correct labels: “, cm_correct_labels.shape, cm_correct_labels) print(“Predicted labels: “, cm_predictions.shape, cm_predictions)


~~~python

cmat = confusion_matrix(cm_correct_labels, cm_predictions, labels=range(len(CLASSES)))
score = f1_score(cm_correct_labels, cm_predictions, labels=range(len(CLASSES)), average='macro')
precision = precision_score(cm_correct_labels, cm_predictions, labels=range(len(CLASSES)), average='macro')
recall = recall_score(cm_correct_labels, cm_predictions, labels=range(len(CLASSES)), average='macro')
cmat = (cmat.T / cmat.sum(axis=1)).T # normalized
display_confusion_matrix(cmat, score, precision, recall)
print('f1 score: {:.3f}, precision: {:.3f}, recall: {:.3f}'.format(score, precision, recall))

예측


test_ds = get_test_dataset(ordered=True) # since we are splitting the dataset and iterating separately on images and ids, order matters.

print('Computing predictions...')
test_images_ds = test_ds.map(lambda image, idnum: image)
probabilities = model.predict(test_images_ds)
predictions = np.argmax(probabilities, axis=-1)
print(predictions)

print('Generating submission.csv file...')
test_ids_ds = test_ds.map(lambda image, idnum: idnum).unbatch()
test_ids = next(iter(test_ids_ds.batch(NUM_TEST_IMAGES))).numpy().astype('U') # all in one batch
np.savetxt('submission.csv', np.rec.fromarrays([test_ids, predictions]), fmt=['%s', '%d'], delimiter=',', header='id,label', comments='')
!head submission.csv

visual validation


dataset = get_validation_dataset()
dataset = dataset.unbatch().batch(20)
batch = iter(dataset)

# run this cell again for next set of images
images, labels = next(batch)
probabilities = model.predict(images)
predictions = np.argmax(probabilities, axis=-1)
display_batch_of_images((images, labels), predictions)

Comments